티스토리 뷰
목차
현대의 분자생물학에 기반을 둔 유전학은 DNA부터 개체의 발생에 이르는 유전 기제를 설명하고 있다. 앞서 유전학의 역사에서 기술한 바와 같이 그리피스의 실험과 에이버리의 확인으로 생물의 유전 정보는 DNA에 있음이 밝혀졌다. 유전의 과정은 결국 DNA 복제에서 출발하여 새로운 개체의 출현에 이르는 기제로서 설명된다.
유전자와 생식은 감수 분열의 과정에서 유전자 재조합이 일어난다. 이는 한 쌍의 유전자가 여러 구간에 걸쳐 서로 뒤섞이는 현상이다. 이를 통해 생물은 유전자 다양성을 확보한다. 또 앞에서 기술한 바와 같이 한 유전형질에 여러 유전자가 관여할 수 있는데 이때에는 멘델의 유전법칙 중 독립의 법칙이 지켜지지 않는다. 이는 유전자 재조합 과정에서 교체된 유전자가 유전형질을 변화시키기 때문이다. 이러한 현상을 유전자 연관이라 한다.
DNA는 DNA의 복제는 매우 안정적인 반응이지만 완전하지는 않다. DNA 복제에 이상이 생겨 이전의 DNA와 다른 DNA가 생성되는 것을 돌연변이라 한다. 자연발생적 변이는 100만 번의 DNA 복제 중에서 한 번 정도로 일어나며, 방사선이나 약품을 처리하면 이보다 높은 빈도로 일어난다. 노랑초파리를 이용한 인위적인 돌연변이 실험의 결과 돌연변이의 약 70%는 개체에 해로운 방향으로 진행되며, 나머지 돌연변이는 중립적이거나 유리한 성향을 보인다.
자유롭게 존재하는 네 종류의 데옥시뉴클레오타이드 삼인산, 즉 dATP, dGTP, dCTP, dTTP 가 주형이 되는 DNA 사슬에 다가가 상보적인 결합을 이루게 되면 새로운 이중나선이 형성된다. DNA는 뉴클레오타이드가 사슬처럼 연결된 중합체이다. 유전 정보의 전달은 이 DNA가 복제됨으로써 일어난다. DNA의 이중 나선 구조는 수소 결합에 의지하고 있어 분리와 결합에 비교적 적은 에너지가 투입된다. 특정 효소가 DNA 사슬의 분리를 담당하며, 이렇게 분리된 DNA 사슬은 각자 상대되는 DNA 사슬을 만드는 주형이 된다.
유전자의 발현은 분자생물학적인 관점에서 볼 때 유전자의 정보에 의해 단백질이 형성되는 과정이다. 유전자의 정보는 전령 RNA의 코돈에 의해 전사된 후 운반 RNA의 안티코돈에 의해 번역되어 아미노산을 지정하며 리보솜에서 이를 연결하여 단백질을 형성하게 된다.
미생물에서 일어나는 유전자의 발현에는 오페론이 중요한 역할을 한다. 특정 기능에 관련된 유전자들이 나란히 염색체에 일렬로 배열된 오페론은 염색체에서 하나의 군집을 이루어 유전자 섬을 형성한다. 병원 미생물학에서는 질병의 특징을 파악하고 치료제를 개발하기 위해 병원성 세균의 유전자 섬을 연구하고 있다.
한편, 발생생물학에서 유전자의 발현은 배아의 발생 결과 새로운 개체가 형성되는 것이며, 개체의 발생에는 유전형질뿐만 아니라 자연환경의 영향도 중요한 역할을 한다.
생물의 유전자에는 모든 유전 형질이 들어있어 자식 세대로 전달된다. 그러나, 실제 생물 개체의 발생과 생장에서 나타나는 발현 형질은 유전형질과 함께 환경의 영향을 받는다.
성 유전자에 따라 성별이 결정되는 포유류와는 달리 많은 파충류는 별도의 성 유전자가 없어 발생 시의 환경에 따라 결정된다. 대부분의 거북은 따뜻한 곳의 알은 암컷이 되고 응달의 알은 수컷이 된다. 반면 미국산 악어는 응달의 알이 암컷이 된다. 이처럼 유전자가 생물의 모든 것을 결정하는 것은 아니며 환경이 생물체의 발생과 생장에 영향을 미치기도 한다.
일례로 오른쪽 사진에서 보이는 샴 고양이의 온도 감수성 돌연변이와 같은 것이 있다. 발생과정에서 높은 온도에 노출된 샴고양이의 배아는 털의 색 유전자에 변이를 일으켜 일반적인 샴 고양이의 흰색이 아닌 어두운색 털이 만들어진다.[
유전자는 일반적으로 단백질을 생산함으로써 형질이 발현된다. 단백질은 20종의 아미노산이 복잡하게 얽힌 고분자이다. 유전자는 각각의 아미노산의 연결 순서를 지정함으로써 단백질의 생성을 관할한다.
DNA에서 단백질 형성까지를 단계별로 살펴보면 다음과 같다.
세포에는 많은 리보솜이 있어 전령 RNA는 여러 차례에 걸쳐 리보솜에 들어가 단백질 형성을 지시하고 리보솜에서는 아미노산을 연결하고 전령 RNA와 운반 RNA를 내보낸다. 또 운반 RNA의 끝에는 해당 아미노산이 연결되어 있으며 DNA의 일부 구간이 열려 전사가 시작된다. 전사된 유전 정보는 코돈이라 하며 RNA의 일종인 전령 RNA를 이룬다.
전사된 코돈의 사슬인 전령 RNA는 효소에 의해 해당 코돈의 상보적 조합인 안티코돈을 가진 운반 RNA와 짝을 이루며 아미노산을 단 운반 RNA와 함께 사슬을 이룬 전령 RNA는 리보솜으로 이동한다. 또 작업을 종결하라는 코돈이 들어올 때까지 리보솜은 계속하여 아미노산을 연결하고 이렇게 하여 단백질이 형성된다.
유전자에는 구조 부위와 조절 부위가 있다. 구조 부위는 생물체를 형성하는 단백질의 생산을 지시하기 위한 정보가 들어있고, 조절 부위에는 위에서 설명한 전사인자와 효소들과 같은 조절작용을 담당하는 단백질의 생산을 위한 정보가 들어있다. 실제 생물의 단백질 생성 조절은 단백질이 생산되는 양 자체를 조절하는 것이 아니라 단백질의 생산을 지시하는 RNA의 조절을 통해 간접적으로 이루어진다.
전사의 시작점과 끝점을 정하는 것은 전사인자와 같은 효소들이다. 전사인자는 부적 되먹임에 따라 작동한다. 즉, 전사인자에는 특정한 단백질의 농도를 감지할 수 있는 수용기가 달려있는데, 특정 단백질의 농도가 낮아져 이 수용기에 감지되지 않으면 전사인자는 DNA를 열고 전사를 시작한다.
생물의 게놈에는 수천 개의 유전자가 포함되어 있다. 그러나 이 모든 유전자가 생물체의 발생과 생장에 작용하지는 않는다. 오직 전령 RNA를 통해 단백질을 형성할 수 있는 유전자만 이러한 생명 활동에 관여하며 나머지 유전자는 비활성인 채로 남아 있게 된다. 특정한 단백질을 생성하려면 DNA의 일부 구간만 활성화하여야 한다.