티스토리 뷰
목차
세포설에 따르면 세포는 생명체의 기본 단위이며, 모든 생명체는 하나 이상의 세포로 구성되며, 모든 세포는 세포 분열을 통해 기존의 세포로부터 생성된다고 기술한다.
세포는 또한 많은 병리학적 과정에서 기본 단위로 간주한다. 다세포 생물에서 모든 세포는 궁극적으로 단일 세포인 수정란으로부터 생겨난다. 세포는 세포 분열 동안 세포에서 세포로 전달되는 유전 정보(DNA)를 가지고 있다. 세포에서는 물질대사가 일어나며, 물질대사 중에 에너지 흡수 또는 에너지 방출이 일어난다. 생명의 기원에 대한 연구는 최초 세포의 기원을 밝히기 위한 시도이다.
"진화(evolution)"라는 용어는 1809년에 장 바티스트 라마르크가 과학 용어로 도입하였고, 50년 후인 1859년에 찰스 다윈은 자신의 저서 《종의 기원》에서 자연선택에 의한 과학적 모델을 진화의 원동력으로 제시했다. 앨프리드 러셀 월리스도 진화에 대한 연구와 실험에 기여했기 때문에 다윈이 주장한 개념의 공동발견자로 인정받고 있다. 현대에서 진화는 직접 관찰이 가능해지게 되면서 "관찰할 수 있는 현상"으로 인정받고 있다. 앨프리드 러셀 월리스도 진화에 대한 연구와 실험에 기여했기 때문에 다윈이 주장한 개념의 공동발견자로 인정받고 있다. 다윈은 자연선택이나 선택적 교배 과정을 통해 생물 종이 번성하거나 도태된다는 것을 이론화했다. 현대 종합설에서는 지구의 모든 생물이 하나의 공통 조상에서 분화되어 오늘날과 같은 생물 다양성을 이루게 되었다고 설명하고 있으며 현대 종합설에서 유전적 부동은 진화의 추가적인 메커니즘으로 받아들여졌다.
진화가 일어나는 근본적인 원인은 생물 종이나 개체군 내에 대립하는 유전형질이 다양하게 존재하는 유전적 다양성 때문이다. 생물의 유전형질은 세대에서 세대로 이어지면서 유전적 부동, 자연선택과 같은 외부의 작용에 의해 변화하게 된다. 그 결과 생물 개체군은 환경 적응에 유리한 형질은 유전되고, 그렇지 않은 형질은 사라지는 변화를 겪게 되는데 이것이 바로 진화의 과정이다. 현재는 진화의 과정을 직접 관찰하기도 함으로써, 진화는 관찰 가능한 자연현상의 하나로 집단유전학 등을 통해 연구되고 있다.
계통은 생물이 진화해 온 경로를 바탕으로 한 생물 종 간의 유연관계이며, 생물 종의 진화 역사이다. 계통수는 생물 종 간의 진화적 유연관계를 알 수 있는데 그 이유는 생물의 계통을 알 수 있도록 나뭇가지 모양으로 나타낸 것이다. 생물학에 대한 다양한 접근법은 계통 발생에 대한 정보를 생성하도록 한다. 여기에는 분자생물학(특히 유전체학)의 산물인 DNA 염기서열의 비교와 고생물학의 산물인 고대 생명체의 화석이나 다른 증거들이 포함된다. 생물학자들은 계통학, 표형분류학, 분지학 등 다양한 방법들을 통해 진화적 유연관계를 정리하고 분석한다.
진화는 생명체의 자연사에 대한 이해와 현존하는 생명체의 구성에 대한 이해와 관련이 있다. 이러한 구성은 생명체가 어떠한 진화 과정을 거쳐왔는지를 알아야만 이해될 수 있다. 결론적으로 진화는 모든 생물학 분야의 중심을 차지하고 있다.
DNA는 진핵생물에서는 선형 염색체로, 원핵생물에서는 원형 염색체로 존재한다. 염색체는 DNA와 히스톤 단백질로 구성되어 있다. 세포 내의 염색체 세트와 미토콘드리아, 엽록체 또는 다른 장소에서 발견되는 유전 정보는 세포의 게놈으로 알려져 있다. 원핵생물에서 DNA는 세포질에 핵양체라고 불리는 불규칙한 형태로 존재한다. 진핵생물에서 DNA는 세포핵에 국한되어 있거나 미토콘드리아와 엽록체에 소량으로 존재한다. 유전체의 유전 정보는 유전자 내에 존재하며, 생명체에서 이러한 정보의 완전한 통합을 유전자형이라고 부른다.
유전자는 모든 생명체에서 유전의 기본 단위이다. 유전자는 유전의 단위이며, 특정 방식으로 생명체의 형태 또는 기능에 영향을 미치는 DNA상의 특정 영역이다. 세균에서 동물에 이르기까지 모든 생명체는 RNA로 전사하고, DNA를 복제하고, 단백질로 번역하는 동일한 메커니즘을 사용한다. 세포는 DNA의 정보를 RNA로 전사하고, 리보솜은 RNA로 전사된 정보를 단백질로 알려진 일련의 아미노산 서열로 번역한다. RNA 코돈으로부터 아미노산으로의 유전 암호는 대부분의 생명체에서 동일하다. 예를 들어, 사람의 인슐린을 암호화하는 DNA 염기서열을 식물과 같은 다른 생명체에 삽입하면 인슐린을 생성시킬 수 있다.
모든 생명체는 단세포 생물이든 다세포 생물이든 항상성을 유지하려고 한다. 항상성은 상호 연관된 조절 메커니즘에 의해 통제되는 여러 동적 평형 조절을 통해 안정된 상태를 유지하기 위한 생명체의 내부 환경을 조절하는 생명체(개방계의 일종)의 능력을 뜻한다.
환경 변화가 감지되면, 생명체는 일반적으로 음성 피드백을 통해 기관이나 기관계의 활동을 증가시키거나 감소시켜서 환경 변화에 반응한다. 동적 평형을 유지하고 특정 기능을 효과적으로 수행하기 위해서 생명체는 환경의 변화를 감지하고 반응할 수 있어야 한다. 혈당량이 낮아지면, 글루카곤을 분비하여 혈당량을 높이는 것은 항상성 조절의 한 예이다.
에너지를 생태계로 유입시키는 역할을 하는 생명체들은 생산자 또는 독립영양생물로 알려져 있다. 거의 모든 생명체는 태양으로부터 온 에너지를 근원으로 해서 살아간다. 식물과 다른 광영양생물은 광합성으로 알려지는 과정을 통해 태양의 빛 에너지를 이용하여 원료 분자를 ATP와 같은 유기 분자로 전환한다. 태양으로부터 생산자에 의해 생태계로 유입된 에너지가 먹이 그물의 최종 소비자에게로 전달되는 에너지의 흐름을 영양 단계라 한다. 그러나 몇몇 생태계는 화학영양생물이 메테인, 황화물, 다른 태양 에너지 외의 에너지원으로부터 추출한 에너지에 전적으로 의존한다.
따라서 저장되는 에너지 중 일부는 다른 생명체의 성장과 발달에 사용할 수 있는 바이오매스와 에너지를 생성하는 데 사용된다. 화학 물질에 저장된 에너지를 생명 활동에 필요한 에너지로 전환하는 가장 중요한 과정은 세포 호흡을 비롯한 여러 물질대사다. 이러한 바이오매스와 에너지의 대부분은 부산물과 열로 사라진다.
'YelloCHocolate' 카테고리의 다른 글
미생물학의 이해 (0) | 2022.09.07 |
---|---|
[생물학] 연구 및 조사 (2) / 생물학의 미해결 문제 / 연구분야 (0) | 2022.09.07 |
[생물학] 현대 생물학의 기초(2) / 연구 및 조사 (1) (0) | 2022.09.07 |
생물학의 역사와 이해(2) (0) | 2022.09.06 |
생물학의 역사와 이해 (0) | 2022.09.06 |